Connect with us

B2B Marketing

How AI Powers Ecommerce Recommendations

Published

on

How AI Powers Ecommerce Recommendations



Read the original post

Ecommerce recommender systems are machine-learning algorithms that suggest products to a specific consumer or groups of consumers. The algorithms use historical data — purchases, search history, reviews — to identify an item a shopper would likely buy.

Recommender systems enable Netflix to suggest movies and Amazon to offer related products. Such systems can predict the rating a user might give to a product to encourage her to buy it.

There are many types of artificial-intelligence-based recommender systems and multiple ways of implementing each one. But they all strive to improve:

  • Product sales,
  • Customer engagement and retention,
  • Customer experience,
  • Personalization.

Netflix relies on recommender systems to suggest movies to its customers.

Implementation

Broadly, there are three methods to implement a recommender system.

Collaborative filtering is based on the premise that shoppers with similar preferences tend to order the same products. For example, viewers who rate a movie or set of movies similarly likely have shared tastes. Hence a movie highly rated by one such viewer would presumably interest another.

Collaborative filters parse through all products and identify the ones likely to be purchased by a certain shopper based on feedback from similar customers who have purchased that item. The main advantage of collaborative filtering is simplicity and ease of implementation. Drawbacks include assessing new products and those with little purchase data.

Content-based systems rely on user preferences, profiles, and product attributes. Content-based systems analyze user-generated info and purchase history to match preferred features with recommended products.

Content-based models excel for items with insufficient reviews since they rely on shoppers’ profiles and preferred product attributes. But these models tend to underperform for new shoppers with little-known likes or dislikes.

Hybrid systems leverage multiple approaches with the final…



Read the original post

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Copyright © 2022 Dogeared Digital News